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Abstract
Recently, fairness-aware information retrieval (IR) systems have
been receiving much attention. Numerous fairness metrics and
algorithms have been proposed. The complexity of fairness and
IR systems makes it challenging to provide a systematic summary
of the progress that has been made. This complexity calls for a
more structured framework to navigate future fairness-aware IR
research directions. The field of economics has long explored fair-
ness, offering a strong theoretical and empirical foundation. Its
system-oriented perspective enables the integration of IR fairness
into a broader framework that considers societal and intertempo-
ral trade-offs. In this tutorial, we first highlight that IR systems
can be understood as a specialized economic market. Then, we
re-organize fairness algorithms through three key economic di-
mensions—macro vs. micro, demand vs. supply, and short-term vs.
long-term. We effectively view most fairness categories in IR from
an economic perspective. Finally, we illustrate how this economic
framework can be applied to various real-world IR applications and
we demonstrate its benefits in industrial scenarios. Different from
other fairness-aware tutorials, our tutorial not only provides a new
and clear perspective to re-frame fairness-aware IR but also inspires
the use of economic tools to solve fairness problems in IR. We hope
this tutorial provides a fresh, broad perspective on fairness in IR,
highlighting open problems and future research directions.
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1 Motivation
1.1 Background of Fairness in IR
Information retrieval (IR) systems are designed to help users effi-
ciently access information [35, 58]. However, IR systems such as
search engines or recommender systems also influence and shape
users’ thoughts according to the given information [46]. This re-
quires that IR systems should not only focus on accuracy, but also
give attention to broader beyond-accuracy objectives such as fair-
ness [30], bias mitigation [9], and novelty [23] to promote a health-
ier ecosystem [9, 30]. Among these factors, fairness is crucial for IR
systems as it ensures that the system does not discriminate against
certain user groups [44, 48, 53] and provides more support for the
long tail of valuable creators or item categories [37, 39, 51].

Although numerous fairness-aware IR algorithms have been
proposed, they are categorized into more than ten distinct lev-
els [3, 14, 17, 28, 49, 61], including group vs. individual fairness [5],
user vs. item fairness [27, 51], static vs. dynamic fairness [62], and
short-term v.s. long-term fairness [57]. Moreover, the measures of
fairness also vary, such as max-min fairness [51], gini index [12],
and demographic parity [39]. This complexity in categorization
stems from the diverse definitions of fairness itself [41] and the
involvement of multiple stakeholders (e.g., users, items, platforms,
creators) in IR [1], each with distinct goals. This complexity makes
it challenging for the IR community to systematically summarize
the existing work and identify clear directions for future research.

1.2 Economic Perspective on Fairness in IR
Inspired by literature published in the field of economics, we can
use established economic theory to systematically summarize and
tackle complex fairness challenges in IR. In this tutorial, we first
demonstrate that IR systems can be mapped to roles in a specialized
economic market: users as consumers, items/documents as suppli-
ers, and the platform as a central node, similar to the role of gov-
ernments [56]. Specifically, in this market, users seek high-quality
items, providers strive for maximum exposure of their products,
and the platform aims to maximize profits and user satisfaction
by delivering personalized services to users. Meanwhile, resources
are limited (with a finite number of ranking slots), and the market
price resembles the estimated ranking scores [7]. Given their shared
structure, it is natural to bridge fairness issues in economics with
those in IR systems.

Benefits of using an economic perspective. The field of eco-
nomics has long studied fairness, primarily focusing on how to
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allocate limited resources to best satisfy humans’ unlimited de-
sires [24, 40]. Due to the established body of literature, an economic
perspective on fairness offers a stronger theoretical and empirical
foundation, allowing for a more structured analysis of complex
fairness challenges in IR. Furthermore, the field of economics is
concerned with interactions of different stakeholders in a system
and analyzes the implications thereof over varying time spans. This
systems-oriented thinking allows IR fairness to be embedded within
a broader framework of societal and intertemporal trade-offs. By
building on these well-established economic principles, fairness
research in IR can benefit from greater coherence and avoid the
proliferation of narrowly scoped or disconnected approaches.

IR fairness framework from an economic perspective. In
this tutorial, we will elaborate on the following three economic
dimensions: scale, objects, and time of economic modeling to re-
organize fairness-aware IR algorithms and evaluation methods:
• Scale: macro vs. micro. In economics, microeconomics focuses on
the fair allocation among individuals, while macroeconomics is con-
cerned with the aggregate outcome and fair distribution of societal
resources across people. Micro-level fairness aligns with individ-
ual fairness, which emphasizes personalized user behaviors [5, 45].
In contrast, macro-level fairness corresponds to group or amor-
tized fairness [37, 51], which focuses on aggregating individual
preferences at the group level.
• Objective: demand vs. supply. Economists study the interplay be-
tween the demand and supply side of markets, where the sup-
ply side provides goods, and the demand side consumes goods.
Demand-level fairness corresponds to user fairness, aligning with
the principle of equity [41], which ensures that similar users re-
ceive comparable results. In contrast, supply-level fairness relates
to provider fairness, reflecting the concept of equality [51], which
emphasizes supporting weaker suppliers.
• Time: long-term vs. short-term. In economics, the value of goods
is often measured in terms of their short-term and long-term value.
Long-term economic fairness evaluates resources based on their
future value, aligning with long-term or dynamic fairness [57] in IR.
In contrast, short-term fairness considers only the immediate value
of an item, corresponding to short-term or static IR fairness [39].

This perspective not only provides a novel and structured ap-
proach to reframing fairness-aware IR but also underscores the
potential of applying economic principles and methodologies, such
as game theory [38] and taxation theory [56], to rethink and tackle
fairness challenges in IR systems.

Fairness-aware applications using economic principles.
We also present practical algorithms that implement these ideas in
three real IR scenarios:
• Recruitment search systems. An application in the recruitment do-
main offers valuable insights into the complex interactions between
various stakeholders. Unlike other settings, such as e-commerce,
in a recruitment setting, there is a two-sided interaction [22, 60]:
(i) candidates are searching for job offers and (ii) recruiters are
searching for candidates given a job offer. This ecosystem allows
us to apply economic principles, such as supply-demand theory,
to better understand and analyze the complex interactions in the
recruitment setting.

• Next basket recommendation. An e-commerce recommendation
scenario where users exhibit both repetitive and exploratory pur-
chase behaviors. Supply-side fairness takes into account the pop-
ularity and expected merits of the items. With the coexistence of
repetitive and exploratory recommendation tasks, the evaluation
and optimization of item fairness for next basket recommendation
face unique challenges [26, 32].
• Perzonalized financial product recommendations. In banking and
fintech, recommendation systems are increasingly used to match
customers with financial products such as loans, credit cards, insur-
ance plans, or investment portfolios, based on individual character-
istics. Moreover, IR techniques, including ranking algorithms, are
applied to tasks like credit scoring [6, 21]. These systems operate
under real economic stakes—balancing financial risk, consumer
protection, and regulatory fairness constraints.

1.3 Necessity and Timeliness of this Tutorial
Given the growing necessity and urgency of developing fair and
trustworthy IR systems, we believe this is the right time to offer
such a tutorial that helps researchers and industry practitioners
summarize current advancements and explore future directions in
fairness-aware IR systems, especially in the era of LLMs. Moreover,
our tutorial offers a fresh, well-structured perspective on emerging
fairness issues in IR, enabling participants to gain a deeper under-
standing of these challenges while equipping them with economic
insights to effectively address them in future research.

1.4 Qualification of Tutors
Wehave beenworking on fairness problems in information retrieval
for a long time, underscored by a series of publications on the top-
tier conferences and journals [26, 32, 33, 42–44, 51, 54–56]. Our team
also has a strong educational background andworking experience in
an economic-related field. A highlight of our contributions includes
two papers on IR fairness [51, 56], which were honored with the
Spotlight-Best Paper Candidates at TheWebConf 2023 and the Best
Paper Honorable Mention for SIGIR 2024. Moreover, our team has
rich tutorial experience and has conducted more than 10 tutorials at
various top-tier conferences, including SIGIR, TheWebConf,WSDM,
KDD and RecSys [10, 25, 34, 59]. Our team also implemented a
fairness-aware algorithm toolkit [52]. Thus we believe our tutorial
will be comprehensive and insightful.

2 Objectives
Rooted in economic theory, this tutorial aims to introduce and
summarize fairness-aware IR from an economic perspective. By
leveraging the well-established economic literature on fairness, we
will systematically categorize and analyze fairness-related data,
algorithms, and evaluation methodologies in IR, providing a unique
perspective that not only deepens understanding but also identifies
key open research directions for future exploration.

Additionally, this tutorial aims to equip attendees with economic
insights to better understand and address broader trustworthy IR
challenges beyond fairness, such as novelty, diversity, and inter-
pretability. By drawing parallels between IR systems and economic
markets, we hope to provide a fresh perspective that enables par-
ticipants to design more equitable and transparent IR systems.
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3 Relevance
This tutorial is acutely relevant to the core themes of SIGIR, with
a specific focus on Fairness, Accountability, Transparency, Ethics,
and Explainability (FATE) in IR, poised to inspire advancements in
other trustworthy associated web applications.

In fairness-aware IR, several related tutorials have emerged, in-
cluding Recsys’19, SIGIR’19 [13], which consider fairness mainly
from user study and evaluation perspective, Recsys’20 [18], which
proposes different tools and strategies to mitigate and evaluate
unfairness in IR, SIGIR’21 [31], which proposes a taxonomy on
fairness-aware algorithms in recommender systems, and CIKM’22
[16], which focuses on a fairness taxonomy for search systems from
the machine learning perspective.

The key distinction of our tutorial is that we organize the body of
knowledge on fairness in IR through the structured lens of econom-
ics. This unique perspective not only provides a more systematic
way to understand fairness in IR but also introduces economic tools
as powerful instruments for designing fair IR algorithms.

4 Format and Schedule
The outline for this tutorial is as follows:
00:00–00:20 Introduction (Maarten)

• Introduction of information retrieval systems.
• Introduction of fairness definition.
• Taxonomy for fairness in IR.
• Organization of the tutorial.

00:20–00:50 An Economic View on Fairness in IR (Chen)
• Introduction of economics.
• Introduction of fairness in economics.
• Relating IR systems to the economic markets.
• Re-framing fairness in IR through economics.

00:50–01:00 Q&A
01:00–01:30 Economic-based Fairness Mitigation and Evaluation

Strategies I (Clara, Yuanna)
• Scale: macro vs. micro
– Micro (individual) fairness [45].
– Macro (group or amortized) fairness [5, 37, 51, 55].
– Economic tools: game theory [2], risk theory [20].

• Objective: demand vs. supply
– Demand (user) fairness [27, 29, 44, 50].
– Supply (provider) fairness [4, 11, 51, 55, 56].
– Economic tools: demand-supply theory [47].

Break, with Q&A
01:30–02:00 Economic-based Fairness Mitigation and Evaluation

Strategies II (Clara, Yuanna)
• Time: long-term vs. short-term
– Long-term or dynamic fairness [19, 36, 57].
– Short-term or static fairness [39, 51, 56].
– Economic tools: taxation [56], interests theory [8].

02:00–02:30 Application of economics-inspired IR (Marleen)
• Recruitment search systems [15, 42, 44].
• Next basket recommendation [26, 32, 33].
• Personalized financial product recommendations [6, 21].

02:30–02:50 Open Problems, Future Directions, and Conclusions
(Chen, Maarten)
• Ignoring fairness problems in the IR markets.

• Insights from economic perspective.
• Benchmarks and evaluation.
• Conclusions.

02:50–03:00 Q&A

5 Materials
Slides. The slides will be released on the tutorial website https:
//economic-fairness-ir.github.io/.
Bibliography. A bibliography file will be released on the tutorial
website https://economic-fairness-ir.github.io/.
Related benchmark. We provide a benchmark that introduced
fairness-aware IR algorithms, evaluation metrics, and datasets [52],
available on https://github.com/XuChen0427/FairDiverse.
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